A few months ago, Microsoft let slip a forthcoming Windows 10 feature that was, at the time, called InPrivate Desktop: a lightweight virtual machine for running untrusted applications in an isolated environment. That feature has now been officially announced with a new name, Windows Sandbox.
Windows 10 already uses virtual machines to increase isolation between certain components and protect the operating system. These VMs have been used in a few different ways. Since its initial release, for example, suitably configured systems have used a small virtual machine running alongside the main operating system to host portions of LSASS. LSASS is a critical Windows subsystem that, among other things, knows various secrets, such as password hashes, encryption keys, and Kerberos tickets. Here, the VM is used to protect LSASS from hacking tools such that even if the base operating system is compromised, these critical secrets might be kept safe.
In the other direction, Microsoft added the ability to run Edge tabs within a virtual machine to reduce the risk of compromise when visiting a hostile website. The goal here is the opposite of the LSASS virtual machine—it's designed to stop anything nasty from breaking out of the virtual machine and contaminating the main operating system, rather than preventing an already contaminated main operating system from breaking into the virtual machine.
Windows Sandbox is similar to the Edge virtual machine but designed for arbitrary applications. Running software in a virtual machine and then integrating that software into the main operating system is not new—VMware has done this on Windows for two decades now—but Windows Sandbox is using a number of techniques to reduce the overhead of the virtual machine while also maximizing the performance of software running within the VM, without compromising the isolation it offers.
Traditional virtual machines have their own operating system installation stored on a virtual disk image, and that operating system must be updated and maintained separately from the host operating system. The disk image used by Windows Sandbox, by contrast, shares the majority of its files with the host operating system; it contains a small amount of mutable data, the rest being immutable references to host OS files. This means that it's always running the same version of Windows as the host and that, as the host is updated and patched, the sandbox OS is likewise updated and patched.
Sharing is used for memory, too; operating system executables and libraries loaded within the VM use the same physical memory as those same executables and libraries loaded into the host OS.
Standard virtual machines running a complete operating system include their own process scheduler that carves up processor time between all the running threads and processes. For regular VMs, this scheduler is opaque; the host just knows that the guest OS is running, and it has no insight into the processors and threads within that guest. The sandbox virtual machine is different; its processes and threads are directly exposed to the host OS' scheduler, and they are scheduled just like any other threads on the machine. This means that if the sandbox has a low priority thread, it can be displaced by a higher priority thread from the host. The result is that the host is generally more responsive, and the sandbox behaves like a regular application, not a black-box virtual machine.
On top of this, video cards with WDDM 2.5 drivers can offer hardware-accelerated graphics to software running within the sandbox. With older drivers, the sandbox will run with the kind of software-emulated graphics that are typical of virtual machines.
Taken together, Windows Sandbox combines elements of virtual machines and containers. The security boundary between the sandbox and the host operating system is a hardware-enforced boundary, as is the case with virtual machines, and the sandbox has virtualized hardware much like a VM. At the same time, other aspects—such as sharing executables both on-disk and in-memory with the host as well as running an identical operating system version as the host—use technology from Windows Containers.
At least for now, the Sandbox appears to be entirely ephemeral. It gets destroyed and reset whenever it's closed, so no changes can persist between runs. The Edge virtual machines worked similarly in their first incarnation; in subsequent releases, Microsoft added support for transferring files from the virtual machine to the host so that they could be stored persistently. We'd expect a similar kind of evolution for the Sandbox.
Windows Sandbox will be available in Insider builds of Windows 10 Pro and Enterprise starting with build 18305. At the time of writing, that build hasn't shipped to insiders, but we expect it to be coming soon.
[contf] [contfnew]
Ars Technica
[contfnewc] [contfnewc]